Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461689

RESUMEN

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.

2.
Biomimetics (Basel) ; 8(8)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38132506

RESUMEN

Robotic systems and the human body consist of numerous joint structures, all of which require precise angle adjustments. At present, encoder, strain gauge, and electrical resistance-based sensors are commonly used for angle measurement. However, these sensors have limitations when used in underwater or in environments with strong electromagnetic waves. Therefore, we have developed an angle sensor based on step-index profile plastic optical fiber (SI-POF), which is cost-effective and highly durable, in this study in order to overcome the limitations of existing angle measurement sensors. To this end, the amount of light loss according to the gab and angle changes that occur when the POF angle sensor is applied to the robot arm was experimentally measured, and based on the results, a simulation of the amount of light loss when the two losses occurred at the same time was conducted. In addition, the performance of the POF angle sensor was evaluated by measuring sensitivity and resolution, and comparative verification with a commonly used encoder was conducted to verify the reliability of sensors in extreme environments, such as those with electromagnetic fields and those that are underwater. Through this, the reliability and practicality of the POF angle sensor were confirmed. The results obtained in this study suggest that POF-based angle sensors can contribute to the development of the biomimetic robot industry as well as ordinary robots, especially in environments where existing sensors are difficult to apply, such as areas with underwater or electromagnetic interference (EMI).

3.
Res Sq ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546778

RESUMEN

The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and active transport of biomolecular condensates.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37455242

RESUMEN

PURPOSE: This study investigated the validity of introducing a clinical skills examination (CSE) to the Korean Oriental Medicine Licensing Examination through a mixed-method modified Delphi study METHODS: A 3-round Delphi study was conducted between September and November 2022. The expert panel comprised 21 oriental medicine education experts who were officially recommended by relevant institutions and organizations. The questionnaires included potential content for the CSE and a detailed implementation strategy. Subcommittees were formed to discuss concerns around the introduction of the CSE, which were collected as open-ended questions. In this study, a 66.7% or greater agreement rate was defined as achieving a consensus. RESULTS: The expert panel's evaluation of the proposed clinical presentations and basic clinical skills suggested their priorities. Of the 10 items investigated for building a detailed implementation strategy for the introduction of the CSE to the Korean Oriental Medicine Licensing Examination, a consensus was achieved on 9. However, the agreement rate on the timing of the introduction of the CSE was low. Concerns around 4 clinical topics were discussed in the subcommittees, and potential solutions were proposed. CONCLUSION: This study offers preliminary data and raises some concerns that can be used as a reference while discussing the introduction of the CSE to the Korean Oriental Medicine Licensing Examination.


Asunto(s)
Competencia Clínica , Medicina Tradicional de Asia Oriental , Humanos , Técnica Delphi , Consenso , República de Corea
5.
Phys Rev E ; 107(5): L052602, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37329064

RESUMEN

We present the diffusiophoresis of ellipsoidal particles induced by ionic solute gradients. Contrary to the common expectation that diffusiophoresis is shape independent, here we show experimentally that this assumption breaks down when the thin Debye layer approximation is relaxed. By tracking the translation and rotation of various ellipsoids, we find that the phoretic mobility of ellipsoids is sensitive to the eccentricity and the orientation of the ellipsoid relative to the imposed solute gradient, and can further lead to nonmonotonic behavior under strong confinement. We show that such a shape- and orientation-dependent diffusiophoresis of colloidal ellipsoids can be easily captured by modifying theories for spheres.

6.
Biomicrofluidics ; 17(3): 031301, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37179591

RESUMEN

Manipulating the transport and assembly of colloidal particles to form segregated bands or ordered supracolloidal structures plays an important role in many aspects of science and technology, from understanding the origin of life to synthesizing new materials for next-generation manufacturing, electronics, and therapeutics. One commonly used method to direct colloidal transport and assembly is the application of electric fields, either AC or DC, due to its feasibility. However, as colloidal segregation and assembly both require active redistribution of colloidal particles across multiple length scales, it is not apparent at first sight how a DC electric field, either externally applied or internally induced, can lead to colloidal structuring. In this Perspective, we briefly review and highlight recent advances and standing challenges in colloidal transport and assembly enabled by DC electrokinetics.

8.
Nat Commun ; 13(1): 7597, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494441

RESUMEN

The integration of bottom-up fabrication techniques and top-down methods can overcome current limits in nanofabrication. For such integration, we propose a gradient area-selective deposition using atomic layer deposition to overcome the inherent limitation of 3D nanofabrication and demonstrate the applicability of the proposed method toward large-scale production of materials. Cp(CH3)5Ti(OMe)3 is used as a molecular surface inhibitor to prevent the growth of TiO2 film in the next atomic layer deposition process. Cp(CH3)5Ti(OMe)3 adsorption was controlled gradually in a 3D nanoscale hole to achieve gradient TiO2 growth. This resulted in the formation of perfectly seamless TiO2 films with a high-aspect-ratio hole structure. The experimental results were consistent with theoretical calculations based on density functional theory, Monte Carlo simulation, and the Johnson-Mehl-Avrami-Kolmogorov model. Since the gradient area-selective deposition TiO2 film formation is based on the fundamentals of molecular chemical and physical behaviours, this approach can be applied to other material systems in atomic layer deposition.

9.
Biophys J ; 121(13): 2653-2662, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398019

RESUMEN

Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to ∼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.


Asunto(s)
Espacios Confinados , Natación , Aliivibrio fischeri/fisiología , Animales , Decapodiformes/microbiología , Decapodiformes/fisiología , Simbiosis/fisiología
10.
Nanoscale Res Lett ; 17(1): 40, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35357581

RESUMEN

In the present report, green synthesis of titanium dioxide nanoparticles (TiO2 NPs) was performed by upcycling mangosteen (Garcinia mangostana) pericarp extract (methanol and ethyl acetate extracts). Field emission scanning electron microscopy images revealed an aggregated structure with a highly porous network of TiO2 NPs. TiO2 NPs synthesized with ethyl acetate extract (EtOAc-TiO2 NPs) exhibited more monodispersity and possessed smoother surfaces than the control TiO2 NPs (Con-TiO2 NPs) and TiO2 NPs synthesized with methanol extract (MeOH-TiO2 NPs). High-resolution X-ray diffraction patterns clearly confirmed that TiO2 NPs had a crystalline nature. A mixture of anatase and rutile was observed in Con-TiO2 NPs and MeOH-TiO2 NPs, while EtOAc-TiO2 NPs had only anatase with the smallest size (12.50 ± 1.81 nm). Ethyl acetate extract contained the highest amount of α-mangostin; thus, the surface of TiO2 NPs was functionalized with ethyl acetate extract. The functionalized TiO2 NPs synthesized with ethyl acetate extract (EtOAc-TiO2-αm) showed the highest 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) radical scavenging activity. In vitro cell viability on mouse fibroblast cells (NIH3T3) indicated that the newly synthesized TiO2 NPs did not show any significant cytotoxicity. Therefore, the TiO2 NPs in the present report have the potential to be used in cosmetic applications such as sunscreens.

11.
Biomater Sci ; 10(4): 947-959, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35043794

RESUMEN

Polymeric microspheres containing magnesium hydroxide (MH) and a bioactive agent (BA), such as apocynin (APO) and astaxanthin (ATX), have been prepared as functional dermal fillers with enhanced physicochemical and biological performance. In this study, polycaprolactone (PCL)-based microspheres were produced with a uniform size of about 30-40 µm by utilizing a membrane emulsification device. MH from the PCL/MH microspheres effectively neutralized acidic products from PCL degradation. For in vitro cell experiments, when acidic degradation products (6-hydroxycaproic acid, HCA) were treated with MH, the acidic pH was neutralized to induce wound healing and suppress inflammation. The microspheres comprised of BA had a sustained release of the BA, without an initial burst release. Remarkably, the ATX added into the microspheres was maintained for 16 weeks and displayed positive attributes, such as tissue regeneration and collagen production improvement, as noted by in vivo testing. Overall, these results suggest that the bioactive PCL microspheres containing ATX have excellent potential as a functional dermal filler for skin aesthetics and facial plastic surgery.


Asunto(s)
Rellenos Dérmicos , Colágeno , Ácido Hialurónico , Microesferas , Poliésteres , Piel
12.
Nano Lett ; 21(18): 7625-7630, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34516140

RESUMEN

The transport of nanoparticles in biological hydrogels is often hindered by the strong confinement of the media, thus limiting important applications such as drug delivery and disinfection. Here, we investigate nanoparticle transport in collagen hydrogels driven by diffusiophoresis. Contrary to common expectations for boundary confinement effects where the confinement hinders diffusiophoresis, we observe a nonmonotonic behavior in which maximum diffusiophoretic mobility is observed at intermediate confinement. We find that such behavior is a consequence of the interplay between multiple size-dependent effects. Our results display the utility of diffusiophoresis for enhanced nanoparticle transport in physiologically relevant conditions under tight confinement, suggesting a potential strategy for drug delivery in compressed tissues.


Asunto(s)
Hidrogeles , Nanopartículas , Colágeno , Sistemas de Liberación de Medicamentos
13.
Electrophoresis ; 42(21-22): 2356-2364, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34558074

RESUMEN

Electroosmosis on nonuniformly charged surfaces often gives rise to intriguing flow behaviors, which can be utilized in applications such as mixing processes and designing micromotors. Here, we demonstrate nonuniform electroosmosis induced by electrochemical reactions. Water electrolysis creates pH gradients near the electrodes that cause a spatiotemporal change in the wall zeta potential, leading to nonuniform electroosmosis. Such nonuniform EOFs induce multiple vortices, which promote the continuous accumulation of particles that subsequently form a colloidal band. The band develops vertically into a "wall" of particles that spans from the bottom to the top surface of the chamber. Such a flow-driven colloidal band can be potentially used in colloidal self-assembly and separation processes irrespective of the particle surface properties. For instance, we demonstrate these vortices can promote rapid segregation of soft colloids such as oil droplets and fat globules.


Asunto(s)
Coloides , Electroósmosis , Electrodos , Electrólisis , Concentración de Iones de Hidrógeno
14.
Langmuir ; 37(17): 5356-5363, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890793

RESUMEN

The superhydrophobic surface has been used in ultradry surface applications, such as the maritime industry, windshields, non-sticky surfaces, anti-icing surfaces, self-cleaning surfaces, and so forth. However, one of the main hurdles for the production of superhydrophobic surfaces is high-cost fabrication methods. Here, we report a handy process of self-synthesis fabrication of superhydrophobic surfaces with daily supplies. Driven by the physics of biscuit dunking, we introduce a method to self-synthesize superhydrophobic surfaces from daily supplies by coating a substrate with a liquid (liquids of paraffin from candles or polydimethylsiloxane) and subsequently sprinkling powders (food-desiccant silica, alumina, sugar, salt, or flour). A mechanistic study revealed that the capillary force, governed by surface energy difference, liquid viscosity, and powder pore size, draws the liquid solution into the porous channels within the powders. The entire surface of powders, in turn, is covered with the low-surface-energy liquid to maintain the porosity, creating a 3D porous nanostructure, resulting in a water contact angle over 160°. This work provides a scientific understanding that technological developments are closely related to the science that can be seen in our daily lives. Also, we believe that further intensive studies extended from this work could enable to home-fabricate a superhydrophobic surface, such as a bathtub and sink in bathrooms and a cooking area and sink in kitchens.

15.
Biomater Sci ; 9(3): 892-907, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33245077

RESUMEN

Although drug-eluting stents (DESs) are mainly coated with biodegradable polymers such as PLGA and PLLA, their acidic degradation products can alter the local microenvironment and affect the homeostasis of adjacent tissue. Previously, we developed anti-inflammatory PLGA-based materials including magnesium hydroxide (MH) to relieve the side effects caused by PLGA degradation. However, the underlying molecular mechanism of its protective effects has not yet been clarified. Here, we demonstrated the pathological mechanism of vascular endothelial activation caused by PLGA by-products. The PLGA by-products accumulated in HCAECs through MCT1, followed by oxidative stress and the activation of the MAPK/NF-κB signaling pathway. Finally, the PLGA by-products increased the expression of VCAM-1 as well as the secretion of proinflammatory cytokines. However, the addition of MH particles significantly diminished the activation of this molecular pathway and the expression of inflammation-related factors induced by acidic PLGA degradation products. Furthermore, Mg2+ released from MH particles restored endothelial function in both intracellular and extracellular spaces. Taken together, MH particles prevent the accumulation of PLGA degradation products in HCAECs, thereby repressing the associated vascular endothelial activation. These findings on the biochemical mechanisms are expected to provide important clues for addressing the safety issues in nearly all biodegradable polymer-based implants.


Asunto(s)
Stents Liberadores de Fármacos , Hidróxido de Magnesio , Implantes Absorbibles , Endotelio Vascular , Polímeros
16.
ACS Nano ; 14(10): 14219-14227, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33000940

RESUMEN

From birth to health, surfactants play an essential role in our lives. Due to the importance, their environmental impacts are well understood. One of the aspects that has been extensively studied is their impact on bacteria, particularly on their motility. Here, we uncover an alternate chemotactic strategy triggered by surfactants-diffusiophoresis. We show that even a trace amount of ionic surfactants, down to a single ppm level, can promote the bacterial diffusiophoresis by boosting the surface charge of the cells. Because diffusiophoresis is driven by the surface-solute interactions, surfactant-enhanced diffusiophoresis is observed regardless of the types of bacteria. Whether Gram-positive or -negative, flagellated or nonflagellated, the surfactants enable fast migration of freely suspended bacteria, suggesting a ubiquitous locomotion mechanism that has been largely overlooked. We also demonstrate the implication of surfactant-enhanced bacterial diffusiophoresis on the rapid formation of biofilms in flow networks, suggesting environmental and biomedical implications.


Asunto(s)
Tensoactivos , Natación , Bacterias , Biopelículas , Iones
17.
Soft Matter ; 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32996554

RESUMEN

Correction for 'Light-triggered explosion of lipid vesicles' by Vinit Kumar Malik et al., Soft Matter, 2020, DOI: 10.1039/d0sm01027h.

18.
Soft Matter ; 16(38): 8904-8911, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895680

RESUMEN

Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we present a generalized biophysical model incorporating a stochastic account of membrane rupture to describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e. explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance release in therapeutic carriers.


Asunto(s)
Membrana Dobles de Lípidos , Biofisica , Membrana Celular , Presión Osmótica
19.
Langmuir ; 36(25): 7032-7038, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31859510

RESUMEN

We present a microfluidic crossflow separation of colloids enabled by the dissolution of CO2 gas in aqueous suspensions. The dissolved CO2 dissociates into H+ and HCO3- ions, which are efficient candidates for electrolytic diffusiophoresis, because of the fast diffusion of protons. By exposing CO2 gas to one side of a microfluidic flow channel, a crossflow gradient can be created, enabling the crossflow diffusiophoresis of suspended particles. We develop a simple two-dimensional model to describe the coupled transport dynamics that is due to the competition of advection and diffusiophoresis. Furthermore, we show that oil nanoemulsions can be effectively separated by utilizing highly charged particles as a carrier vehicle, which is otherwise difficult to achieve. These results demonstrate a portable, versatile method for separating particles in broad applications including oil extraction, drug delivery, and bioseparation.

20.
Soft Matter ; 15(19): 3879-3885, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31021341

RESUMEN

The transport of particulate matter to and from dead-end pores is difficult to achieve due to confinement effects. Diffusiophoresis is a phenomenon that results in the controlled motion of colloids along solute concentration gradients. Thus, by establishing an electrolyte concentration gradient within dead-end pores, it is possible to induce the flow of particles into and out of the pores via diffusiophoresis, as has been demonstrated recently. In this paper, we explain the pore-scale mechanism by which individual colloids are entrained in dead-end pores by diffusiophoresis. We flow particles past a series of dead-end pores in the presence of a solute concentration gradient. Our results reveal that particles execute pore-to-pore hops before ultimately being captured. We categorize an event as particle capture when the particle's trajectory terminates within the dead-end pore. Experiments and numerical simulations demonstrate that particle capture only occurs when flowing particles are positioned sufficiently close to the pore entry. Outside this capture region, the particles have insufficient diffusiophoretic velocities to induce capture and their dynamics are largely dominated by their free-stream advective velocities. We observe that the particles move closer to the device wall as they hop, thereby reducing the effect of flow advection and increasing that of diffusiophoresis. These results enhance our understanding of suspension dynamics in a driven system and have implications for the development, design, and optimization of diffusiophoretic platforms for drug delivery, cosmetics, and material recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...